栏目列表
2011年版义务教育小学数学课程标准解读
发布时间:2012-11-15   点击:   来源:本站原创   录入者:白舜华

  2011年版小学数学课程标准充分体现了德育为先,能力为重,创新方法,力求减负等特点。与2001年版相比,数学课程标准从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。新修订课标主要呈现以下九大变化:

  1. 基本理念“三句”变“两句”, “6条”改“5条”

  原来的“三句话”

  ● 人人学有价值的数学

  ● 人人都能获得必需的数学

  ● 不同的人在数学上得到不同的发展

  现在的“两句话”

  ● 人人都能获得良好的数学教育

  ● 不同的人在数学上得到不同的发展

  (修订后与过去的提法相比:有更深的意义和更广的内涵,落脚点是数学教育而不是数学内容,有更强的时代精神和要求(公平的、优质的、均衡的、和谐的教育。)

  “6条”改“5条”

  在结构上由原来的6条改为5条,将原《标准》第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。

  ● 原课标: 数学课程——数学——数学学习——数学教学——评价——信息技术

  ● 修改后:数学课程——课程内容——教学活动——学习评价——信息技术

  2.理念中新增加的提法

  ● 要处理好四个关系

  ● 有效的教学活动是什么

  ● 数学课程基本理念(两句话)

  ● 数学教学活动的本质要求

  ● 培养良好的数学学习习惯

  ● 注重启发式

  ● 正确看待教师的主导作用

  ● 处理好评价中的关系

  ● 注意信息技术与课程内容的整合

  3.关于数学观的修改

  原课标:

  ● 数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。

  ● 数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。

  ● 数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。

  课标修改稿:

  ● 数学是研究数量关系和空间形式的科学。

  ● 数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具 ……

  ● 数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。

  ● 要发挥数学在培养人的理性思维和创新能力方面的不可替代的作用

  树立正确的数学教学观:教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。

  数学教学中最需要考虑的是什么?数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。

  4.“双基”变“四基”

  “双基”:基础知识、基本技能;

  “四基”:基础知识、基本技能、基本思想、基本活动经验

  “四基”与数学素养:

  ● 掌握数学基础知识

  ● 训练数学基本技能

  ● 领悟数学基本思想

  ● 积累数学基本活动经验

  《国家数学课程标准》制定组组长、东北师大校长史宁中教授提出了“数学教学的四基”,引起了数学教育界的广泛关注。以前强调的双基是指基础知识、基本技能,双基教学重视基础知识、基本技能的传授,讲究精讲多练,主张‘练中学’,相信‘熟能生巧’,追求基础知识的记忆和掌握、基本技能的操演和熟练,以使学生获得扎实的基础知识、熟练的基本技能和较高的学科能力为其主要的教学目标。现在提出的四基不但包括了基础知识、基本技能、还增加了基本思想、基本活动经验。

  史宁中教授指出:“‘基本思想’主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想。”关于基本思想方法,陈老师为我们分析了数学思想方法的四大育人功能:一是有利于完善学生的数学认知结构;二是可以提升学生的元认知水平;三是可以发展学生的思维能力;四是有利于培养学生解决问题的能力。陈老师结合小学数学现有的课标教材重点给我们介绍了小学阶段涉及到的数学思想方法,比如分类、转化、归纳、数形结合、数学建模、猜想、符号化、方程与函数、极限等数学思想方法。他系统地为我们解读了这些数学思想方法的意义、在小学数学教学中的作用和价值以及应用时的注意事项,陈老师的分析让我认识到在教学中关注数学思想方法的重要性,在教学中渗透数学思想方法的必要性。

  “双基”变“四基”,为数学教师提出了更高的要求,要求数学教师必须为儿童的学习和个人发展提供了最基本的数学基础、数学准备和发展方向,促进儿童的健康成长,使人人获得良好的数学素养,不同的人在数学得到不同的发展。“双基”变“四基”,任重而道远。

  常用的小学数学思想方法:对应思想方法、假设思想方法、比较思想方法、符号化思想方法、类比思想方法、转化思想方法、分类思想方法、集合思想方法、数形结合思想方法、统计思想方法、极限思想方法、代换思想方法、可逆思想方法、化归思维方法、变中抓不变的思想方法、数学模型思想方法、整体思想方法等等。

  5.关于设计思路的修改

  ● 学段划分保持不变;

  ● 对课程目标动词及水平要求的设计基本保持不变,增加了目标动词的同义词;

  ● 对四个学习领域的名称作适当调整;

  ● 对学习内容中的若干关键词作适当调整对其意义作更明确的阐释。

  6.四个领域名称的变化

  原课标:数与代数 、空间与图形、统计与概率、实践与综合应用

  修改后:数与代数、图形与几何、统计与概率、综合与实践

  7.主要的关键词的变化

  ● 原课标:数感、符号感、空间观念、统计观念、应用意识、推理能力

  ● 修改后:数感、符号意识、运算能力、模型思想、空间观念、几何直观、推理能力、数据分析观念

  最近一次修改又加上了:应用意识、创新意识。

  符号感为何改为符号意识?

  ● 符号感(Symbol Sense)

  ● 原课标:

  “符号感”主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。”

  ● 修改稿:

  “符号意识”主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行一般性的运算和推理。建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。”

  ● 符号感与数感都用“感”,“感”的表述过多。符号感主要的不是潜意识、直觉。符号感最重要的内涵是运用符号进行数学思考和表达,进行数学活动。“意识”有两个意思:第一,用符号可以进行运算,可以进行推理;第二,用符号进行的运算和推理得到的结果具有一般性。所以这是一个“意识”问题,而不是“感”的问题。数学的本质是概念和符号,并通过概念和符号进行运算和推理。所以只能用“意识”。

  8.关于课程目标的修改

  在总体目标中突出了“培养学生创新精神和实践能力”的改革方向和目标价值取向。

  课程目标提法上的一些变化:

  ——明确了使学生获得数学的基础知识、基本技能、基本思想、基本活动经验(数学“四基)。

  ——提出了培养学生发现问题、提出问题、分析问题和解决问题能力。

  ——目标具体从“知识技能”“数学思考”“问题解决”“情感态度”四个方面阐述。

  ——学段目标的表述方式有所改变

  9.关于内容标准的修改

  结构上的变化:

  数与代数的变化:(在内容结构上没有变化。)

  第一学段:

  ①增加“能进行简单的整数四则混合运算(两步)”

  ②使一些目标的表述更加准确。例如将“能灵活运用不同的方法解决生活中的简单问题,并能对结果的合理性进行判断”,修改为“能运用数及数的运算解决生活中的简单问题,并能对结果的实际意义作出解释”。

  第二学段:

  ①增加的内容:

  ● 增加“经历与他人交流各自算法的过程,并能表达自己的想法”。

  ● 增加“了解公倍数和最小公倍数;了解公因数和最大公因数”。

  ● 增加“在具体情境中,了解常见的数量关系:总价=单价×数量、路程=速度×时间,并能解决简单的实际问题”。

  ● 增加“结合简单的实际情境,了解等量关系,并能用字母表示”。

  ②调整的内容:

  ● 将“理解等式的性质”,改为“了解等式的性质”

  ● 将“会用等式的性质解简单的方程(如3x+2=5,2x-x=3)”,改为“能解简单的方程(如3x+2=5,2x-x=3)”。

  ③使一些目标的表述更加准确和完整。例如将“会用方程表示简单情境中的等量关系”,改为“能用方程表示简单情境中的等量关系,了解方程的作用”。

  图形与几何的变化:

  第一学段

  ①删除的内容

  ● 删除“能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形”,并将相关要求放在第二学段。

  ● 删除“能在方格纸上画出简单图形的轴对称图形”,并将相关要求放在第二学段。

  ● 删除“会看简单的路线图”,相关要求放入第二学段。

  ● 删除“体会并认识千米、公顷”,相关要求放入第二学段。

  ②降低要求

  对于“东北、西北、东南、西南”四个方向,不要求给定一个方向辨认其余方向,降低要求为知道这些方向。

  ③使一些目标的表述更加准确和完整。例如将“辨认从正面、侧面、上面观察到的简单物体的形状”改为“能根据具体事物、照片或直观图辨认从不同角度观察到的简单物体的形状”。

  第二学段:

  ①删掉“了解两点确定一条直线和两条相交直线确定一个点”。

  ②增加“知道扇形”。

  ③使一些目标的表述更加准确和完整。例如将“探索并掌握圆的周长公式”改为“通过操作,了解圆的周长与直径的比为定值,掌握圆的周长公式”。

  统计内容主要变化如下:

  ● 第一学段与《标准》相比,最大的变化是鼓励学生运用自己的方式(包括文字、图画、表格等)呈现整理数据的结果,不要求学生学习“正规”的统计图(一格代表一个单位的条形统计图)以及平均数(这些内容放在了第二学段)。

  ● 第二学段与《标准》相比,在统计量方面,只要求学生体会平均数的意义,不要求学生学习中位数、众数(这些内容放在了第三学段)。

  ● 加强体会数据的随机性。在以前的学习中,学生主要是依靠概率来体会随机思想的,《标准(修改稿)》希望通过数据分析使学生体会随机思想。

  概率内容主要变化如下:

  ● 第一学段、第二学段的要求降低。在第一学段,去掉了《标准》对此内容的要求。第二学段,只要求学生体会随机现象,并能对随机现象发生的可能性大小做定性描述。

  ● 明确指出所涉及的随机现象都基于简单随机事件:所有可能发生的结果是有限的、每个结果发生的可能性是相同的。

  第一学段:

  ①鼓励学生运用自己的方式(包括文字、图画、表格等)呈现整理数据的结果,删除“象形统计图、一格代表一个单位的条形统计图”、“平均数”的内容,相关要求放在了第二学段。

  ②删除“知道可以从报刊、杂志、电视等媒体中获取数据信息”。

  ③删除“不确定现象”部分,相关要求放在了第二学段。

  第二学段:

  ①删除“中位数”、“众数”的内容,相关要求放在了第三学段。

  ②删除“体会数据可能产生的误导”。

  ③降低了“可能性”部分的要求,只要求学生体会随机现象,并能对随机现象发生的可能性大小做定性描述,定量描述放入第三学段。

  加强体会数据的随机性

  ● 这是修改后的一个重要变化。原来,学生主要是依靠概率来体会随机思想的,现在希望学生通过数据来体会随机思想。

  ● 这种变化从“数据分析观念”核心词的表述也可以看出。

  综合与实践的变化:

  ● 统一了三个学段的名称,进一步明确了其目地和内涵。

  ●“综合与实践”是一类以问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验、培养学生应用意识与创新意识的重要途径。

  实施建议的变化

  实施建议的变化不再分学段阐述,而是分教学建议、评价建议、教材编写建议、课程资源利用和开发建议。在强调学生主体作用的同时,明确提出教师的组织和引导作用。

  教学设计的最根本的出发点和重心要放在学生的发展上 ——“为了学生的发展而教”。突出体现知识的基础性、普及性和发展性,使数学教育面向全体学生,实现:“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得以不同的发展”。教之道在于“渡”,学之道在于“悟”。作为数学教师,必须立足于学生的“就近发展区”来设计数学课堂教学活动。

  二、教学情境设计上:要 “关注学生的认知、走进学生的生活、着力与学生的共情点”。

  1 、创设数学情境要从学生的认知基础出发:无论是新知识的接受还是纳入,都取决于学生已有的数学认知结构。因此,在数学课堂教学中教师所提出的问题,所创设的教学情境,都应该确保学生原有的认知结构与新知识相互作用。使学生在“既陌生,又似曾相识”心理驱使下,愉快地进入学习状态。

  2、创设数学情境要走进学生身边的生活:数学来源于生活,而又高于现实生活,是生活中关于数与形经验的提炼与结晶。教师要紧密联系学生的生活环境,从学生的生活经验出发,创设生动的教学情境,让学生在生活中学习数学,应用数学,数学教学才能焕发生命活力。把教材内容与“数学现实”有机的结合起来,符合中学生的认知特点,消除了学生对数学知识的陌生感,不仅有利于理解问题情境中的数学问题,而且更有利于使学生体验到生活中数学无处不再,同时增强了数学的应用意识,唤起学生的学习兴趣。情境创设绝不是简单的文本重现,而是教师与学生对文本的新认识、新创造。

  3、创设数学情境要充分挖掘共情点:一是要激发学生的学习内在需要,把学生引入到身临其境的环境中去,自然的生发学习的需求;二是要引导学生体验学习过程,让学生在经历和体验中学习数学,而不是直接获得结论;三是要帮助学生建立有效的解决问题,沟通知识点的联系,沟通数学与生活的联系的方法,科学的思考问题,寻找解题途径;四是要促进情感与态度的发展,避免传统数学教学中的只重知识技能不重学生人文精神的滋养。

  三、数学课堂“问题引领”上:要“设台阶、展过程、示学法、预生成”。

  新课标要求:“不同的人在数学上得到不同的发展”,因此,教师提问时应有意识地将问题分层次在全体学生中平稳分布,教室内不应该出现“被遗忘的角落”,要鼓励所有的学生认真思考,使不同层次的学生都有回答问题的愿望。

  1、提问要有思考的价值,能启发学生思考、达到巩固知识、调控教学情境的目的。

  2、课堂提问根据学生已有的知识水平和思维特点,提问的内容由易到难,由浅入深,由形象到抽象,层层递进,这样才能使教师的引导启发作用得到最大限度的发挥,才能使学生的思维由“未知区”向“最近发展区”最后向“已知区”转化。

  3、课堂提问要把学生引入问题情境,激发学生去“生成”。“凡事豫则立,不豫则废。”(《礼记。中庸》)我们倡导生成的课堂教学并不是不要预设,不仅要而且还要合理地改进预设。因为“预设”和“生成”是相辅相成的、两者缺一不可。如果我们只钟情于“预设”,往往会把学生引入狭窄的小胡同。叶澜说:“一个真正把人的发展放在关注中心的教学设计,会使师生教学过程创造性的发挥提供时空余地。” 这就说明我们需要预设,更需要多关注学生数学学习状态的预设。例如教学案例:某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式?延伸提问(1)假设每台冰箱售价为a元,商场每天销售这种冰箱的利润是y元,请写出y与a之间的函数表达式?(2)激发学生自己提问如:若将b个50元,如何求y与b的关系?;最大利润时,售价为多少?;以生活中的时间编制一道类似的习题?这样既调动了学生学习数学的积极性和主动性 , 增强了学生参与数学活动的意识 , 又培养了学生的学习方法与能力。同时也向学生渗透了实践 —— 认识 —— 再实践 —— 再认识的辩证观点。这样一来不仅极大地激发了学生学习的兴趣 , 而且培养了学生类比、归纳的能力。

  四、合作探究设计上:要明确“探究活动的预案、探究的方法、探究的参与度”。

  合作探究活动应:启发式设计和分层活动的预案,为每一个学生提供充分的数学活动的条件和空间。合作探究问题着力点:教材的重点、难点和知识生长点处;学习中既有联系又有区别处;学生单独解决有困难或因观察思考问题角度不同有异议处等。如“已知等边三角形ABC,能否找一点P,使△PAB、△PBC、△PAC均是等腰三角形?你能找出几个这样的点?”上述问题不易理解、答案较多,单独解决可能不全面,学生可通过讨论得到结论。合作学习要有目的的安排座位,把能力强的和能力差的,会表达的和不善表达的,性格活泼的和性格内向的进行有机组合,让学生之间互相影响、共同进步。使学生间有直接交流合作的机会,真正实现共同学习、共同提高,提高课堂的参与度。

  教学的过程是“教”与“学”的双向活动过程,教学实践是一个“摸索”与“磨合”的征程,所有教学设计前提条件是:一定要适合学情,只有“教与学”的双方和谐一致了,才会有学生个性化的精彩表现;才会涌现出真正创造性“思维火花”。

附件
    关闭窗口
    打印文档
    手机端打开